Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Consider the functions f, g: R arrow R defined by f(x)=x2+(5/12) text and g(x)= begincases 2(1-(4|x|/3)), |x| ≤ (3/4), 0, |x|>(3/4) . endcases If α is the area of the region ( x , y ) ∈ R × R :| x | ≤ (3/4), 0 ≤ y ≤ min f( x ), g( x ) then the value of 9 α is
Q. Consider the functions
f
,
g
:
R
→
R
defined by
f
(
x
)
=
x
2
+
12
5
and
g
(
x
)
=
{
2
(
1
−
3
4∣
x
∣
)
,
0
,
∣
x
∣
≤
4
3
,
∣
x
∣
>
4
3
.
If
α
is the area of the region
{
(
x
,
y
)
∈
R
×
R
:
∣
x
∣
≤
4
3
,
0
≤
y
≤
min
{
f
(
x
)
,
g
(
x
)}
}
,
then the value of
9
α
is _____
3877
154
JEE Advanced
JEE Advanced 2022
Report Error
Answer:
6
Solution:
x
2
+
12
5
=
3
2
−
8
x
x
2
+
3
8
x
+
12
5
−
2
=
0
12
x
2
+
32
x
−
19
=
0
12
x
2
+
38
x
−
6
x
−
19
=
0
2
x
(
6
x
+
19
)
−
1
(
6
x
+
19
)
=
0
(
6
x
+
19
)
(
2
x
−
1
)
=
0
x
=
2
1
α
=
2
A
1
+
A
2
α
=
2
(
0
∫
1/2
x
2
+
12
5
d
x
+
2
1
×
4
1
×
3
2
)
⇒
α
=
2
[
(
3
x
3
+
12
5
x
)
0
1/2
+
12
1
]
⇒
α
=
2
[
24
1
+
24
5
+
12
1
]
⇒
α
=
2
[
24
1
+
5
+
2
]
⇒
α
=
2
×
24
8
⇒
9
α
=
9
×
12
8
⇒
9
α
=
6