f(0)=x→0Limf(x)=x→0Lim(lnx)20⋅x30=x→0Limx−30(lnx)20(∞∞) =x→0Lim−30⋅x−3120(lnx)19x1=−3020x−30(lnx)19………... so on
hence x→0Limf(x)=0=f(0)⇒f is continuous at x=0 with f(0)=0. now f′(x)=x2920(lnx)19+(lnx)20⋅30⋅x29 =(lnx)19⋅x29⋅10[2+3lnx]=0
this gives either x=0 which is rejected or lnx=0⇒x=1
or lnx=−32⇒x=e−32