Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Consider the function f(x)=(|x-1|/x2), then f(x) is
Q. Consider the function
f
(
x
)
=
x
2
∣
x
−
1∣
, then
f
(
x
)
is
2441
227
BITSAT
BITSAT 2020
Report Error
A
increasing in
(
0
,
1
)
∪
(
2
,
∞
)
B
Decreasing in
(
−
∞
,
0
)
∪
(
1
,
2
)
C
Increasing in
(
0
,
1
)
∪
(
2
,
∞
)
D
decreasing in
(
0
,
1
)
∪
(
2
,
∞
)
Solution:
f
(
x
)
=
x
2
∣
x
−
1∣
=
{
x
2
1
−
x
,
x
2
x
−
1
,
x
<
1
x
=
0
x
>
1
Clearly,
f
(
x
)
is continuous for all
x
in
R
except at
x
=
0
.
f
′
(
x
)
=
{
x
3
x
−
2
,
x
3
2
−
x
,
x
<
1
x
=
0
x
>
1
f
′
(
x
)
>
0
⇒
x
<
0
or
1
<
x
<
2
f
′
(
x
)
<
0
⇒
0
<
x
<
1
or
x
>
2
Hence,
f
(
x
)
is increasing in
(
−
∞
,
0
)
∪
(
1
,
2
)
and decreasing in
(
0
,
1
)
∪
(
2
,
∞
)
.