Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Consider the function f: R arrow R defined by f(x)= begincases(2- sin ((1/x)))|x|, x ≠ 0 0 , x=0 endcases Then f is:
Q. Consider the function
f
:
R
→
R
defined by
f
(
x
)
=
{
(
2
−
sin
(
x
1
)
)
∣
x
∣
,
x
=
0
0
,
x
=
0
Then
f
is:
2807
193
JEE Main
JEE Main 2021
Application of Derivatives
Report Error
A
monotonic on
(
−
∞
,
0
)
∪
(
0
,
∞
)
0%
B
not monotonic on
(
−
∞
,
0
)
and
(
0
,
∞
)
57%
C
monotonic on
(
0
,
∞
)
only
29%
D
monotonic on
(
−
∞
,
0
)
only
14%
Solution:
f
(
x
)
=
⎩
⎨
⎧
−
x
(
2
−
sin
(
x
1
)
)
0
x
(
2
−
sin
(
x
1
)
)
x
<
0
x
=
0
f
′
(
x
)
=
{
−
(
2
−
sin
x
1
)
−
x
(
−
cos
x
1
⋅
(
−
x
2
1
)
)
(
2
−
sin
x
1
)
+
x
(
−
cos
x
1
(
−
x
2
1
)
)
x
<
0
x
>
0
f
′
(
x
)
=
{
−
2
+
sin
x
1
−
x
1
cos
x
1
x
<
0
2
−
sin
x
1
+
x
1
cos
x
1
x
>
0
f
′
(
x
)
is an oscillating function which is non-monotonic in
(
−
∞
,
0
)
∪
(
0
,
∞
)
.