Q.
Consider the following statements Statement I The principal value of cos−1(−21) is 3−π Statement II The principal value of tan−1(−1) is 4−π
Choose the correct option.
I. Let cos−1(−21)=θ⇒cosθ=−21
We know that, the range of principal value branch of cos−1θ is [0,π]. ∵cosθ=−21=−cos3π=cos(π−3π)[∵cos(π−θ)=−cosθ] =cos32π⇒θ=32π where ,θ∈[0,π] ⇒cos−1(−21)=32π
Hence, principal value of cos−1(−21) is 32π.
Note cos−1(−θ)=−cos−1θ
II. Let tan−1(−1)=θ⇒tanθ=−1
We know that, the range of principal value branch of tan−1θ is (−2π,2π). ∵tanθ=−1=−tan4π=tan(−4π) (∵tan(−θ)=−tanθ) ⇒θ=−4π where, θ∈(−2π,2π) ∴tan−1(−1)=−4π
Hence, the principal value of tan−1(−1) is −4π.