Q.
Consider the following statements Statement I tan9∘−tan27∘−tan63∘+tan81∘=4 Statement II tan9∘+cot9∘=sin18∘2 and cot27∘+tan27∘=cos36∘2sin
Choose the correct option.
We have tan9∘−tan27∘−tan63∘+tan81∘ =tan9∘+tan81∘−tan27∘−tan63∘ =tan9∘+tan(90∘−9∘)−tan27∘−tan(90∘−27∘) −tan9∘+cot9∘−(tan27∘+cot27∘)....(i)
Also,tan9∘+cot9∘=sin9∘cos9∘1=sin18∘2.....(ii) (∵cosxsinx+sinxcosx=sinx⋅cosx1)
Similarly, tan27∘+cot27∘ =sin27∘cos27∘1=sin54∘2=cos36∘2.....(iii)
Using Eqs. (ii) and (iii) in Eq. (i), we get tan9∘−tan27∘−tan63∘+tan81∘ =sin18∘2−cos36∘2 =5−12×4−5+12×4=4