I. cot4x(sin5x+sin3x) =cot4x⋅2sin25x+3xcos25x−3x (∵sinC+sinD=2sin2C+Dcos2C−D) =sin4xcos4x×2sin4xcosx =2cos4xcosx
Now, cotx(sin5x−sin3x) =cotx⋅2cos25x+3xsin25x−3x (∵sinC−sinD=2cos2C+Dsin2C−D) =sinxcosx×2cos4xsinx=2cos4xcosx ∴LHS=RHS
Hence, Statement I is true.
Also, Statement II is also true but not a correct explanation of Statement I.