Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Consider the following statements Statement I a( cos C- cos B) is equal to 2(b-c) cos 2 (A/2) Statement II a cos A+b cos B+c cos C =2 a sin B ⋅ sin C Choose the correct option.
Q. Consider the following statements
Statement I
a
(
cos
C
−
cos
B
)
is equal to
2
(
b
−
c
)
cos
2
2
A
Statement II
a
cos
A
+
b
cos
B
+
c
cos
C
=
2
a
sin
B
⋅
sin
C
Choose the correct option.
90
161
Trigonometric Functions
Report Error
A
Statement I is true; Statement II is true; Statement II is a correct explanation for Statement I
B
Statement I is true; Statement II is true; Statement II is not a correct explanation for Statement I
C
Statement I is true; Statement II is false
D
Statement I is false; Statement II is true
Solution:
I. Applying cosine formula, we have
a
(
cos
C
−
cos
B
)
=
a
[
2
ab
(
a
2
+
b
2
−
c
2
)
−
2
a
c
(
a
2
+
c
2
−
b
2
)
]
=
2
b
c
(
a
2
c
+
b
2
c
−
c
3
−
a
2
b
−
b
c
2
+
b
3
)
=
2
b
c
(
b
3
−
c
3
)
+
(
b
2
c
−
b
c
2
)
−
(
a
2
b
−
a
2
c
)
=
2
b
c
(
b
3
−
c
3
)
+
b
c
(
b
−
c
)
−
a
2
(
b
−
c
)
=
(
b
−
c
)
2
b
c
[
(
b
2
+
c
2
+
b
c
)
+
(
b
c
−
a
2
)
]
=
(
b
−
c
)
⋅
[
2
b
c
(
b
2
+
c
2
−
a
2
)
+
2
b
c
2
b
c
]
=
(
b
−
c
)
[
2
b
c
(
b
2
+
c
2
−
a
2
)
+
1
]
=
(
b
−
c
)
(
1
+
cos
A
)
=
2
(
b
−
c
)
cos
2
2
A
∴
a
(
cos
C
−
cos
B
)
=
2
(
b
−
c
)
cos
2
2
A
II. Applying sine rule, we have
s
i
n
A
a
=
s
i
n
B
b
=
s
i
n
C
c
=
K
(say)
a
=
K
sin
A
,
b
=
K
sin
B
and
C
=
K
sin
C
Now,
a
cos
A
+
b
cos
B
+
c
cos
C
=
K
sin
A
cos
A
+
K
sin
B
cos
B
+
K
sin
C
cos
C
=
2
1
K
(
sin
2
A
+
sin
2
B
+
sin
2
C
)
=
K
[
sin
(
A
+
B
)
cos
(
A
−
B
)
+
sin
C
cos
C
]
=
K
[
sin
(
π
−
C
)
cos
(
A
−
B
)
+
sin
C
cos
C
]
=
K
sin
C
[
cos
(
A
−
B
)
+
cos
C
]
=
K
sin
C
[
cos
(
A
−
B
)
+
cos
{
π
−
(
A
+
B
)}]
=
K
sin
C
[
cos
(
A
−
B
)
−
cos
(
A
+
B
)]
=
K
sin
C
×
2
sin
A
sin
B
=
2
(
K
sin
A
)
sin
B
sin
C
=
2
a
sin
B
sin
C
Hence,
a
cos
A
+
b
cos
B
+
c
cos
C
=
2
a
sin
B
sin
C