log2sinx(1+cosx)=2 2sinx=1,2sinx>0,1+cosx>0 ⇒sinx=21,sinx>0 and x=0 or a multiple of π ⇒x∈(0,π)−{4π,43π} (feasible region)
Hence, from (i), we get, (2sinx)2=1+cosx ⇒2sin2x=1+cosx ⇒2cos2x+cosx−1=0 ⇒(2cosx−1)(cosx+1)=0 ⇒cosx=21[cosx+1>0] ⇒x=3π ⇒p=1,q=3 ⇒p2+q2=10