Q.
Consider the equation (1+a+b)2=3(1+a2+b2) where a,b are real numbers. Then,
Solution:
Given,
(1+a+b)2=3(1+a2+b2)
1+a2+b2+2a+2b+2ab
=3+3a2+3b2
⇒2a2−2b2−2a−2b−2ab+2=0
⇒(a2−2a+1)+(b2−2b+1)
+(a2+b2−2ab)=0
⇒(a−1)2+(b−1)2+(a−b)2=0
∴a−1=0,b−1=0,a−b=0
⇒a=1,b=1,a=b
∴a=b=1
Exactly one pair.