Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Consider the differential equation (x+(x3/3 !)+(x5/5 !)+ ldots/1+(x2)2 !+(x4)4 !+ ldots=(d x-d y/d x+d y). If y(0)=1 and the solution of the differential equation is of the form 2 y f(x)=m e/2 x)+n . Evaluate (m+n) f(0)
Q. Consider the differential equation
1
+
2
!
x
2
+
4
!
x
4
+
…
x
+
3
!
x
3
+
5
!
x
5
+
…
=
d
x
+
d
y
d
x
−
d
y
. If
y
(
0
)
=
1
and the solution of the differential equation is of the form
2
y
f
(
x
)
=
m
e
2
x
+
n
.
Evaluate
(
m
+
n
)
f
(
0
)
78
174
Differential Equations
Report Error
Answer:
2
Solution:
1
+
2
!
x
2
+
4
!
x
4
+
…
x
+
3
!
x
3
+
5
!
x
5
+
…
=
d
x
+
d
y
d
x
−
d
y
e
−
x
e
x
=
(
d
x
+
d
y
)
−
(
d
x
−
d
y
)
(
d
x
+
d
y
)
+
(
d
x
−
d
y
)
...[By Componendo dividendo]
⇔
e
2
x
=
d
y
d
x
Integrating, we get
y
=
2
−
e
−
2
x
+
k
⇔
2
y
e
2
x
=
2
k
e
2
x
−
1
y
(
0
)
=
1
⇒
k
=
2
3
⇒
2
y
e
2
x
=
3
e
2
x
−
1
⇒
f
(
x
)
=
e
2
x
,
m
=
3
,
n
=
−
1
⇒
(
m
+
n
)
f
(
0
)
=
(
3
−
1
)
(
1
)
=
2