Q. Consider the differential equation $\frac{x+\frac{x^{3}}{3 !}+\frac{x^{5}}{5 !}+\ldots}{1+\frac{x^{2}}{2 !}+\frac{x^{4}}{4 !}+\ldots}=\frac{d x-d y}{d x+d y}$. If $y(0)=1$ and the solution of the differential equation is of the form $2 y f(x)=m e^{2 x}+n .$ Evaluate $(m+n) f(0)$
Differential Equations
Solution: