Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Consider the differential equation (d y/d x)=(y3/2(x y2-x2)) such that y(1)=1, then the particular solution of the equation is
Q. Consider the differential equation
d
x
d
y
=
2
(
x
y
2
−
x
2
)
y
3
such that
y
(
1
)
=
1
, then the particular solution of the equation is
1214
110
Differential Equations
Report Error
A
y
2
=
e
x
y
2
−
1
B
y
2
=
e
1
−
x
y
2
C
y
=
e
1
−
x
y
2
D
y
2
=
e
x
y
2
Solution:
d
y
d
x
=
y
3
2
(
x
y
2
−
x
2
)
⇒
x
2
d
y
1
d
x
=
2
(
x
y
1
−
y
3
1
)
Put,
x
1
=
t
d
y
d
t
=
2
(
y
3
1
−
y
t
)
d
y
d
t
+
y
2
t
=
y
3
2
⇒
t
⋅
y
2
=
2
ln
y
+
ln
c
x
y
2
=
ln
c
2
c
y
2
=
e
x
y
2
u
sing
y
(
1
)
=
1
, we get
c
=
e
⇒
y
2
=
e
x
y
2
−
1