Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Consider the curve f(x, y)=0 which satisfies the differential equation (d y/d x)+(1/x-y2+4)=0 such that y(1)=-1. If f(x, y) represents a conic then find the length of its latus rectum.
Q. Consider the curve
f
(
x
,
y
)
=
0
which satisfies the differential equation
d
x
d
y
+
x
−
y
2
+
4
1
=
0
such that
y
(
1
)
=
−
1
. If
f
(
x
,
y
)
represents a conic then find the length of its latus rectum.
297
88
Conic Sections
Report Error
Answer:
1
Solution:
d
x
d
y
=
y
2
−
x
−
4
l
⇒
d
y
d
x
+
x
=
y
2
−
4
⇒
x
⋅
e
y
=
∫
e
y
(
y
2
−
4
)
d
y
+
c
x
⋅
e
y
=
e
y
(
y
2
−
4
)
−
e
y
(
2
y
)
+
e
y
⋅
2
+
c
x
=
(
y
2
−
4
−
2
y
+
2
)
+
c
⋅
e
−
y
x
=
(
y
−
1
)
2
−
3
+
c
⋅
e
−
y
passes
(
1
,
−
1
)
⇒
1
=
4
−
3
+
c
⋅
e
−
y
c
=
0
∴
(
y
−
1
)
2
=
(
x
+
3
)