We have, x2+y2−6x+4y=12 ⇒(x−3)2+(y+2)2=25 ⇒x−3)2+(y+2)2=(5)2
Equation of tangent whose slope m is y+2=m(x−3)±5m2+1.....(i)
Now, this tangent is parallel to line 4x+3y+5=0 ∴ Slope of line is −34
Put the value of m=−34 is Eq. (i), we get y+2=−34(x−3)±5(3−4)2+1 ⇒y+2=3−4(x−3)±5(35) ⇒3y+6=−4x+12±25 ⇒4x+3y=6±25 ⇒4x+3y=31 or 4x+3y=−19
Hence, equation of tangent is 4x+3y−31=0 or 4x+3y+19=0