Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Consider φ(a, b, t)=a4-5 a2+b2+5 t2-4 b t-2 t+(33/4) where a, b, t ∈ R. Given that f(t) and g(b) are the minimum values of φ( a , b , t ). ∫ ( dx / f ( x )) is [Note: Where C is the constant of integration]
Q. Consider
ϕ
(
a
,
b
,
t
)
=
a
4
−
5
a
2
+
b
2
+
5
t
2
−
4
b
t
−
2
t
+
4
33
where
a
,
b
,
t
∈
R
. Given that
f
(
t
)
and
g
(
b
)
are the minimum values of
ϕ
(
a
,
b
,
t
)
.
∫
f
(
x
)
d
x
is
[Note: Where C is the constant of integration]
121
144
Integrals
Report Error
A
tan
−
1
(
x
−
1
)
+
C
B
2
1
tan
−
1
(
2
x
−
1
)
+
C
C
ln
(
x
−
1
+
x
2
−
2
x
+
2
)
+
C
D
2
1
ln
∣
∣
x
+
1
x
−
1
∣
∣
+
C
Solution:
ϕ
(
a
,
b
,
t
)
=
(
a
2
−
2
5
)
2
+
(
b
−
2
t
)
2
+
(
t
−
1
)
2
+
1
Now consider
E
=
(
b
−
2
t
)
2
+
(
t
−
1
)
2
+
1
=
5
t
2
−
2
t
(
2
b
+
1
)
+
b
2
+
2
Now
g
(
b
)
=
4
a
−
D
=
5
b
2
−
4
b
+
9
=
5
(
b
−
2
)
2
+
5
Hence
g
(
b
)
=
ϕ
(
a
,
b
,
t
)
∣
m
i
n
.
=
5
1
(
b
−
2
)
2
+
1
∥
l
y
E
=
b
2
−
4
b
t
+
5
t
2
−
2
t
+
2
Hence
f
(
t
)
=
ϕ
(
a
,
b
,
t
)
∣
m
i
n
.
=
4
a
−
D
=
4
4
⋅
1
(
5
t
2
−
2
t
+
2
)
−
16
t
2
=
5
t
2
−
2
t
+
2
−
4
t
2
=
t
2
−
2
t
+
2
=
(
t
−
1
)
2
+
1
(i)
∫
(
x
−
1
)
2
+
1
d
x
=
tan
−
1
(
x
−
1
)
+
C