f(x)=(x−1)tan−1x−21ln(1+x2) f′(x)=(x−1)1+x21+tan−1x−1+x2x=tan−1x−1+x21 f′(x)>0∀x≥1⇒f(x) is ↑ f′′(x)=1+x21+(1+x2)22x=(1+x2)2(1+x)2 f′′(x)>0⇒f′(x) is ↑∀x≥1 f′(∞)→2π⇒f′(x)<2π∀x≥1
Using LMVT in [x,x+4],x≥1 x+4−xf(x+4)−f(x)=f′(c) for c∈(x,x+4) ∴f(x+4)−f(x)<2π∀x∈[1,∞)