Q.
Consider, f(x)=∣x−1∣+∣2x−π∣+∣x−3∣ and g(x)=sin−1x+tan−1x. The value of x for which f(g(x)) is minimum is ksinλπ where k and λ∈N then find the value of (k+λ).
f(x) will be minimum at x=2π⇒g(x)=2π ⇒sin−1x+tan−1x=2π⇒sin−1x=cot−1x⇒sin−1x=sin−11+x21 ⇒x=1+x21⇒x2(1+x2)=1⇒x4+x2−1=0 ⇒x2=2−1±1+4=2−1±5=2(45−1)=2sin(10π)⇒x=2sin(10π) ∴λ+k=12