∫x4+x2+13x4+2x2+1dx=f(x) Multiplying the numerator and denominator by x in the given integral, we get, f(x)=∫x6+x4+x23x5+2x3+xdx
Now substitute x6+x4+x2=t2 ⇒2(3x5+2x3+x)dx=2tdt
So, f(x)=∫ttdt=x6+x4+x2+C
As f(1)=3⇒C=0
Hence, f(2)=64+16+4⇒(f(2))2=84