Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Consider a polynomial p ( x )= x 6+2 x 2+1. If x 1, x 2, ldots ldots, x 6 are the roots of the equation p ( x )=0 and q ( x )= x 3-1, then find the value of displaystyle prodi=16 q ( x i)
Q. Consider a polynomial
p
(
x
)
=
x
6
+
2
x
2
+
1
. If
x
1
,
x
2
,
……
,
x
6
are the roots of the equation
p
(
x
)
=
0
and
q
(
x
)
=
x
3
−
1
, then find the value of
i
=
1
∏
6
q
(
x
i
)
93
120
Complex Numbers and Quadratic Equations
Report Error
Answer:
16
Solution:
(
x
−
x
1
)
(
x
−
x
2
)
……
(
x
−
x
6
)
=
x
6
+
2
x
2
+
1
x
=
1
(
1
−
x
1
)
(
1
−
x
2
)
……
(
1
−
x
6
)
=
4
...(1)
x
=
w
(
w
−
x
1
)
(
w
−
x
2
)
……
(
w
−
x
6
)
=
w
6
+
2
w
2
+
1
=
2
(
1
+
w
2
)
=
−
2
w
....(2)
x
=
w
2
(
w
2
−
x
1
)
(
w
2
−
x
2
)
……
(
w
2
−
x
6
)
=
w
12
+
2
w
4
+
1
=
−
2
w
2
.....(3)
Multiplying (1), (2) and (3)
(
1
−
x
1
3
)
(
1
−
x
2
3
)
……
..
(
1
−
x
6
3
)
=
16
(
1
−
x
1
3
)
(
1
−
x
2
3
)
……
..
(
1
−
x
6
3
)
=
16
⇒
(
x
1
3
−
1
)
(
x
2
3
−
1
)
…
..
(
x
6
3
−
1
)
=
16
⇒
i
=
1
∏
6
q
(
x
i
)
=
16