Q.
Consider a particle on which constant forces F1=i^+2j^+3k^N and F2=4i^−5j^−2k^N act
together resulting in a displacement from position r1=20i^+15j^cm to r2=7k^cm. The
total work done on the particle is
Given, F1=(i^+2j^+3k^)N F2=(4i^−5j^−2k^)N r1=20i^+15j^cm r2=7k^cm
Total force on particle, F=F1+F2 =i^+2j^+3k^+4i^−5j^−2k^ =(5i^−3j^+k^)N
Displacement of particle, s=r2−r1 =7k^−20i^−15j^ =(−20i^−15j^+7k^)cm
We know that, Work(ω)=F⋅s =(5i^−3j^+k^)(−20i^−15j^+7k^)×10−2 =(−100+45+7)×10−2 =−0.48J