Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Consider a function f(x)=xx, ∀ x∈ [1 , ∈ fty) . If g(x) is the inverse function of f(x) , then the value of g' (4) is equal to
Q. Consider a function
f
(
x
)
=
x
x
,
∀
x
∈
[
1
,
∈
f
t
y
)
. If
g
(
x
)
is the inverse function of
f
(
x
)
, then the value of
g
′
(
4
)
is equal to
2300
179
NTA Abhyas
NTA Abhyas 2020
Report Error
A
l
o
g
2
e
B
2
1
l
o
g
2
e
e
C
4
1
l
o
g
2
e
e
D
2
1
l
o
g
e
2
e
Solution:
f
(
x
)
=
x
x
⇒
l
o
g
f
(
x
)
=
x
l
o
g
x
Differentiating with respect to
x
, we get,
f
′
(
x
)
=
x
x
(
1
+
l
o
gx
)
Now, by property
g
′
(
f
(
x
))
=
f
′
(
x
)
1
{
∵
g
(
x
)
is the inverse of
f
(
x
)
}
Putting
x
=
2
g
′
(
f
(
2
)
=
f
′
(
2
)
1
⇒
g
′
(
4
)
=
2
2
(
1
+
l
o
g
2
)
1
=
4
1
(
l
o
g
)
2
e
e
)