Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Consider a function f: N arrow R, satisfying f(1)+2 f(2)+3 f(3)+ ldots+x f(x)=x(x+1) f(x) ; x ≥ 2 with f (1)=1. Then (1/ f (2022))+(1/ f (2028)) is equal to
Q. Consider a function
f
:
N
→
R
, satisfying
f
(
1
)
+
2
f
(
2
)
+
3
f
(
3
)
+
…
+
x
f
(
x
)
=
x
(
x
+
1
)
f
(
x
)
;
x
≥
2
with
f
(
1
)
=
1
. Then
f
(
2022
)
1
+
f
(
2028
)
1
is equal to
39
2
JEE Main
JEE Main 2023
Relations and Functions
Report Error
A
8200
12%
B
8000
4%
C
8400
9%
D
8100
75%
Solution:
Given for
x
≥
2
f
(
1
)
+
2
f
(
2
)
+
……
+
x
f
(
x
)
=
x
(
x
+
1
)
f
(
x
)
replace
x
by
x
+
1
⇒
x
(
x
+
1
)
f
(
x
)
+
(
x
+
1
)
f
(
x
+
1
)
=
(
x
+
1
)
(
x
+
2
)
f
(
x
+
1
)
⇒
f
(
x
+
1
)
x
+
f
(
x
)
1
=
f
(
x
)
(
x
+
2
)
⇒
x
f
(
x
)
=
(
x
+
1
)
f
(
x
+
1
)
=
2
1
,
x
≥
2
f
(
2
)
=
4
1
,
f
(
3
)
=
6
1
Now
f
(
2022
)
=
4044
1
f
(
2028
)
=
4056
1
So,
f
(
2022
)
1
+
f
(
2028
)
1
=
4044
+
4056
=
8100