Q.
Consider a certain mass of a gas at 127∘C and 2atm . The root-mean-square speed of the gas at this state is 3200ms−1 . Now, find the root-mean-square speed of the gas(in ms−1 ) at 27∘C and 1atm :
Here, vrms1=3200ms−1,T1=(127)oC=(127+273)K=400K P1=2atm,vrms2=?,T2=(27)oC=(27+273)K=300K P2=1atm
RMS velocity of a gas, vrms=M3RT
Here, M is the molar mass which will remains same.
Therefore, vrms2∝T ∴vrms12vrms22=T1T2 vrms22=vrms12×T1T2=(3200)2×400300 ⇒vrms2=100ms−1