Q.
Consider a biquadratic equation 81x4+216x3+216x2+96x−65=0 whose roots are α,β,γ,δ. Given α,β are real roots and γ,δ are imaginary roots.
The value of (α+β)3−(γ+δ)3 is equal to
172
77
Complex Numbers and Quadratic Equations
Report Error
Solution:
81x4+216x3+216x2+96x−65=0 (3xx4+4C1(3x)3(2)+4C2(3x)2(2)2+4C3(3x)(2)3+(2)4=81 (3x+2)4=81 (3x+2)2=9 or (3x+2)2=−9 (α+β)3−(γ+δ)3=(3−4)3−(3−4)3=0