Let ∫(Ax2+2Bx+C)2ax2+2bx+cdx=g(x)f(x) where f(x) and g(x) are polynomials ; (B2=AC⇒Ax2+2Bx+C is not a perfect square )
differentiate w.r.t. x (Ax2+2Bx+C)2ax2+2bx+c=g2(x)g(x)f′(x)−f(x)g′(x)
Hence g(x)≅Ax2+2Bx+C
If Nr of RHS in equation (1), has to be a quadratic function then f(x) must be linear function (think !) i.e. f(x)=px+q ∴p(Ax2+2Bx+C)−(px+q)(2Ax+2B)≡ax2+2bx+c
Comparing coefficient of x2 Ap-2Ap =a⇒−Ap=a⇒p=A−a coefficient of x 2Bp−(2Bp+2Aq)=2b⇒−Aq=b⇒q=A−b constant term pC−2Bq=c substituting the value of p and q A−aC+A2Bb=c⇒2Bb−aC=Ac⇒2Bb=Ac+aC Hence 2Bb=Ac+aC