Let p=log5(log53). If 3C+5−p=45, then the value of C is
P
1
B
If x and y satisfy simultaneously the equations,(2x)log2=(3y)log3 and 3logx=2logy, then the value of (x−1+y−1), is
Q
2
C
The value of x satisfying the equation 3log3x+9log3x+27log32x2=3 is coprime with
R
3
S
5
212
103
Continuity and Differentiability
Report Error
Solution:
(A) Consider 5−p=5−log5(log53)=5log5(log53)1=log531(alogaN=N) ∴5−p=log531=log35
Now, 3C+log35=45 ⇒3C⋅3log35=45⇒3C⋅5=45⇒3C=9=32⇒C=2. Ans.
(B) We have (2x)log2=(3y)log3
taking log on both side, we get ⇒(log2)(log2+logx)=log3(log3+logy) ⇒log22−log23=log3⋅logy−log2⋅logx ....(1) Again, 3logx=2logy
taking log on both the sides, we get ⇒logx⋅log3=logy⋅log2⇒log2logx=log3logy=k (let) ⇒logx=k⋅log2 and logy=k⋅log3( put in (1)) ∴ we will get k=−1⇒x=1/2,y=1/3
Hence (x−1+y−1)=(2+3)=5. Ans
(C)3log3x+32log3x+33log3x=3 ⇒x+x2+x3=3⇒(x−1)+(x2−1)+(x3−1)=0 ⇒(x−1)(1+x+1+x2+x+1)=0 ⇒x=1(∵x2+2x+3=0)