If the equations (x−2)4−(x−2)=0 and x2−kx+k=0,k∈R have two roots in common then k equals
P
0
B
Let Z=(cos12∘+isin12∘+cos48∘+isin48∘)6 then Im(z) is equal to
Q
1
C
If w is one of the imaginary cube root of unity then the sum 1(2−w)(2−w2)+2(3−w)(3−w2)+(n−1)(n−w)(n−w2)=220 The value of n equals
R
3
D
If ∣z−2∣=min{∣z∣,∣z−4∣} then possible value(s) of Re(z) will be
S
5
60
106
Complex Numbers and Quadratic Equations
Report Error
Solution:
(A) Roots of 11t are 2,3,(2+w),(2+w2) where w is the cube roots of unity.
2 and 3 can not be the common root ∴ common roots are 2+w,2+w2
equation of x2−3x+3=0⇒k=3
(B)Z=cos12∘+cos48∘+i(sin48∘+sin12∘)cos30∘⋅cos18∘+2isin30∘⋅cos18∘ =2cos18∘(cos30∘+isin30∘) =2cos18∘[cos(π/6)+isin(π/6)] Z6=26⋅cos618∘(cosπ+isinπ) =−26(cos618∘)6+0i ImZ6=0
(C) sum =n=1∑n(n−1)(n−w)(n−w2)=n=1∑n(n3−1)=(n=1∑nn3)−n=220 or [2n(n+1)]2−n=220
if n=5, then LHS =225−5=220
Hence n=5
(D) Case-I: ∣z∣<∣z−4∣….(1)
then ∣z−2∣=∣z∣⇒Re(z)=1
which satisfy equation (1) Case-II: ∣z∣>∣z−4∣….(2) then ∣z−2∣=∣z−4∣⇒Re(z)=3 which satisfy equation (2) so Re(z) can be 1 and 3