Q.
Column I
Column II
A
If the equations $(x-2)^4-(x-2)=0$ and $x^2-k x+k=0, k \in R$ have two roots in common then $k$ equals
P
0
B
Let $Z =\left(\cos 12^{\circ}+i \sin 12^{\circ}+\cos 48^{\circ}+i \sin 48^{\circ}\right)^6$ then $\operatorname{Im}( z )$ is equal to
Q
1
C
If $w$ is one of the imaginary cube root of unity then the sum $1(2-w)\left(2-w^2\right)+2(3-w)\left(3-w^2\right)+$ $(n-1)(n-w)\left(n-w^2\right)=220$ The value of $n$ equals
R
3
D
If $|z-2|=\min \{|z|,|z-4|\}$ then possible value(s) of $\operatorname{Re}(z)$ will be
S
5
Column I | Column II | ||
---|---|---|---|
A | If the equations $(x-2)^4-(x-2)=0$ and $x^2-k x+k=0, k \in R$ have two roots in common then $k$ equals | P | 0 |
B | Let $Z =\left(\cos 12^{\circ}+i \sin 12^{\circ}+\cos 48^{\circ}+i \sin 48^{\circ}\right)^6$ then $\operatorname{Im}( z )$ is equal to | Q | 1 |
C | If $w$ is one of the imaginary cube root of unity then the sum $1(2-w)\left(2-w^2\right)+2(3-w)\left(3-w^2\right)+$ $(n-1)(n-w)\left(n-w^2\right)=220$ The value of $n$ equals | R | 3 |
D | If $|z-2|=\min \{|z|,|z-4|\}$ then possible value(s) of $\operatorname{Re}(z)$ will be | S | 5 |
Complex Numbers and Quadratic Equations
Solution: