51
126
Relations and Functions - Part 2
Report Error
Solution:
We have f(x)=sin22x−2sin2x,x∈R =4sin2xcos2x−2sin2x=4sin2x(1−sin2x)−2sin2x=2sin2x−4sin4x =−4[sin4x−21sin2x]=−4[(sin2x−41)2−161] ∴f(x)=41−4(sin2x−41)2
Clearly range of f′=[−2,41]
Also f(−x)=f(x)
So fis even function
Also fis periodic with period π.
(B) We have f(x)=π4sin−1(sinπx),x∈R
Clearly ' f ' is periodic function with period ' 2 ' and also f is an odd function.
Clearly Rf=[−2,2]
(C) We have, f(x)=ln(cos(sinx))
For domain, ln(cos(sinx))≥0;(cos(sinx))≥1⇒cos(sinx)=1; ∴sinx=0⇒x=nπ,n∈I Rf={0} since f(x)=0 ∴f is both odd and even.
Also, f is periodic with period π.
(D) We have f(x)=tan−1(x2+3x2+1),x∈R
Let y=x2+3x2+1 ⇒yx2+3y=x2+1⇒(3y−1)=(1−y)x2 ∴x2=(1−y3y−1)≥0
So, y−13y−1≤0 ⇒y∈[31,1) ∴ Range of f(x)=[6π,4π)
Also f(−x)=f(x)∀x∈R ∴ fis even function.