Putting the value of C0,C2,C4....., we get =1+3.2!n(n+1)+5.4!n(n−1)(n−2)(n−3)+.....=n+11 [(n+1)+3!(n+1)n(n−1)+5!(n+1)n(n−1)(n−2)(n−3)+.....]
Put n+1=N =N1[N+3!N(N−1)(N−2)+5!N(N−1)(N−2)(N−3)(N−4)+.....] =N1{NC1+NC3+NC5+.....} =N1{2N−1}=n+12n{∵N=n+1}