We know, (1+x)n=C0+C1x+C2x2+...
and (1−x)n=C0−C1x+C2x2+...
On adding, we get (1+x)n+(1−x)n=2[C0+C2x2+...]
On integrating 0 to 1 , we get [n+1(1+x)n+1−n+1(1−x)n+1]01 =2[1C0x+3C2x3+...]01 ⇒n+12n+1=2[1C0+3C2+...] ⇒1C0+3C2+...=n+12n