Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Both the roots of the equation (x-b)(x-c)+(x-a)(x-c)+(x-a)(x-b)=0 are always
Q. Both the roots of the equation
(
x
−
b
)
(
x
−
c
)
+
(
x
−
a
)
(
x
−
c
)
+
(
x
−
a
)
(
x
−
b
)
=
0
are always
2344
208
IIT JEE
IIT JEE 1980
Complex Numbers and Quadratic Equations
Report Error
A
positive
19%
B
negative
22%
C
real
51%
D
None of these
9%
Solution:
(
x
−
a
)
(
x
−
b
)
+
(
x
−
b
)
(
x
−
c
)
+
(
x
−
c
)
(
x
−
a
)
=
0
⇒
3
x
2
−
2
(
a
+
b
+
c
)
x
+
(
ab
+
b
c
+
c
a
)
=
0
Now, discriminant
=
4
(
a
+
b
+
c
)
2
−
12
(
ab
+
b
c
+
c
a
)
=
4
{
a
2
+
b
2
+
c
2
−
ab
−
b
c
−
c
a
}
=
2
{(
a
−
b
)
2
+
(
b
−
c
)
2
+
(
c
−
a
)
2
}
which is always positive.
Hence, both roots are real.