Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
| beginmatrix 1 a a2-bc 1 b b2-ac 1 c c2-ac endmatrix | is equal to:
Q.
∣
∣
1
1
1
a
b
c
a
2
−
b
c
b
2
−
a
c
c
2
−
a
c
∣
∣
is equal to:
1291
193
Jharkhand CECE
Jharkhand CECE 2003
Report Error
A
0
B
a
3
+
b
3
+
c
3
−
3
ab
c
C
3
ab
c
D
(
a
+
b
+
c
)
3
Solution:
Let
Δ
=
∣
∣
1
1
1
a
b
c
a
2
−
b
c
b
2
−
a
c
c
2
−
ab
∣
∣
Applying
(
R
2
→
R
2
−
R
1
,
R
3
→
R
3
−
R
1
)
=
∣
∣
1
0
0
a
b
−
a
c
−
a
a
2
−
b
c
(
b
−
a
)
(
a
+
b
+
c
)
(
c
−
a
)
(
a
+
b
+
c
)
∣
∣
=
(
b
−
a
)
(
c
−
a
)
∣
∣
1
0
0
a
1
1
a
2
−
b
c
a
+
b
+
c
a
+
b
+
c
∣
∣
=
0
(
∵
two rows are identical)