Q.
Ball A of mass 50gm and speed 10m/s collides with other ball B of mass 10gm and speed 15m/s travelling in opposite direction with each other. Determine the final speed of ball B, if the coefficient of restitution is 52.
Given, mA=50gm,uA=10m/s,mB=10gm uB=−15m/s and coefficient of restitution, e=52
The collision of ball A and B is shown as below,
Velocity of second ball B is given by the relation, vB=mA+mBmA(1+e)uA+mA+mBmB−emAuB
Putting the given values in above relation, we get ⇒vB=50+1050(1+52)×10+50+1010−50×52(−15) ⇒vB=60×550×7×10+6010×15 ⇒vB=670+615=685m/s