From the figure shown here, we have OV=2 and OS=22. The vertex V is obtained as follows: (V(OV)cos45∘,(OV)sin45∘)=(221,221)=(1,1) S=((OS)cos45∘,(OS)sin45∘) S=(2,2)
The equation of directrix is OV=VS
where OV=2 VS=(2−1)2+(2−1)2=2
Now, a=2 and therefore, x+y=0 (directrix)
Equation of parabola: we have P(x,y) and PS=PM (x−2)2+(y−2)2=2∣x+y∣ (x+y)2=2((x−2)2+(y−2)2) x2+y2+2xy=2(x2+y2)+16−8x−8y x2+y2−2xy=8x+8y−16 (x−y)2=8(x+y−2)