LHL=x→1−limf(x) =x→1lim(x−1)=0 RHL=x→1+limf(x) =x→1lim(x3−1)=0
Also, f(1)=1−1=0 ∴f is continuous at x=1
Now, Lf′(1)=h→0lim−hf(1−h)−f(1) =h→0lim−h(1−h)−1−0 =h→0lim−h−h=1
and Rf′(1)=h→0limhf(1+h)−f(1) =h→0limh(1+h)3−1−0 =h→0limh1+h3+3h+3h2−1 =h→0limh2+3+3h=3
Clearly, Lf′(1)=Rf′(1) ∴f(x) is not differentiable at x=1