Given : f(t)=tsint
At t=0, we will check continuity of the function. LHL=f(0−h) =h→0lim(0−h)sin(0−h)=h→0lim−h−sinh=1 RHL=f(0+h) =h→0lim(0+h)sin(0+h) =h→0limhsinh=1
and f(0)=1 LHL=RHL=f(0)
So, the function is continuous at t=0
Now, we check the function is maximum or minimum. f′(t)=t1cost−t21sint
and f′′(t)=t2−1sint−t1cost−t21cost−t32sint =t−sint−t22cost+t32sint
For maximum or minimum value of f(x),put f′(x)=0 ⇒tcost−t2sint=0 ⇒ttant=1
Now t→0limf′′(t) =−t→0lim(tsint)−2t→0lim(t3tcost−sint) [00 form ] =−1−2t→0lim(3t2cost−tsint−cost)
[using L' Hospital rule] =−+32t→0limtsint =−1+32×1=3−1<0
So, function f(t) is maximum at t=0