Q.
Assertion : If ∣z1+z2∣2=∣z1∣2+∣z2∣2, then z2z1 is purely imaginary.
Reason : If z is purely imaginary, then z+zˉ=0.
2893
226
Complex Numbers and Quadratic Equations
Report Error
Solution:
We have, ∣z1+z2∣2=∣z1∣2+∣z2∣2 ⇒∣z1∣2+∣z2∣2+2∣z1∣∣z2∣cos(θ1−θ2)=∣z1∣2+∣z2∣2
where θ1=arg(z1),θ2=arg(z2) ⇒cos(θ1−θ2)=0 ⇒θ1−θ2=2π ⇒arg(z2z1)=2π ⇒Re(z2z1)=0 ∴z2z1 is purely imaginary.
If z is purely imaginary, then z+zˉ=0