Q.
Assertion (A) : The maximum value of ∣z∣ when z satisfies the condition ∣∣z+z2∣∣=2 is 1+3 Reason (R) : ∣z1+z2∣≤∣z1∣+∣z2∣.
1346
245
Complex Numbers and Quadratic Equations
Report Error
Solution:
We can write ∣z∣=∣∣z+z2−z2∣∣≤∣∣z+z2+(−z2)∣∣≤∣∣z+z2∣∣+∣∣z−2∣∣ ⇒∣z∣<2+∣z∣2(∵∣∣z+z2∣∣=2) ⇒∣z∣2−2∣z∣−2≤0 ⇒(∣z∣−1+3)(∣z∣−13)≤0 ⇒1−3≤∣z∣≤1+3 ⇒ Maximum value of ∣z∣ is 1+3.