Given, odd in favour of A is 2:1 ∴P(A)=32
Odd in favour of A∪B is 3:1 ∴P(A∪B)=43
Now P(A∪B)=P(A)+P(B)−P(A∩B) ⇒43=32+P(B)−P(A∩B) ⇒P(A∩B)=P(B)+32−43 ⇒P(A∩B)=P(B)−121.....(i) ⇒P(B)≥121.....(*)
Again P(A∩B)≤P(A) ⇒P(B)−121≤32(using (i)) ⇒P(B)≤32+121=43.....(**)
By (*)&(**} we have 121≤P(B)≤43