Q.
Assertion (A) : If H1,H2,H3.............Hn be n H.M. between a & b, then value of H1−aH1+a+Hn−aHn+a=2n Reason (R) : H1=nb+a(n+1)ab,Hn=na+b(n+1)ab obtained by interchanging the numbers a&b.
a,H1,H2,....Hn,b are in H.P ⇒a1,H11,Hn....1,b1 are in A.P. ∴d=ab(n+1)a−b
So, H11=t2=(n+1)aba+nb∴H1=a+nb(n+1)ab ⇒aH1=nb+a(n+1)b...(A) &Hn=na+b(n+1)ab
(By interchanging a & b) ⇒bHn=na+b(n+1)a....(B)
Now, using componendo & dividendo on (A) & (B) then adding, we get H1−aH1+a+Hn−bHn+b=b−a(2n+1)b+a+a−b(2n+1)a+b =b−a{(2n+1)b+a}−{(2n+1)a+b} =b−a(2n+1)(b−a)−(b−a) =b−a(b−a)[2n+1−1]=2n