Q.
Assertion (A) : If A=15∘,B=17∘ and C=13∘ then cot2A+cot2B+cot2C=cot2Acot2Bcot2C
Reason (R): In a △PQR, Tan2PTan2Q+Tan2QTan2R+Tan2PTan2R=1
Solution:
Reason In △PQR
P+Q+R=180∘
⇒2P+2Q+2R=90∘
⇒2P+2Q=90∘−2R
⇒tan(2P+2Q)=tan(90−2R)
⇒1−tan2Ptan2Qtan2P+tan2Q=cot2R
⇒(tan2P+tan2Q)tan2R=1−tan2Ptan2Q
⇒tan2Ptan2Q+tan2Qtan2R+tan2Rtan2P=1
So, reason is true.
Assertion
We have,
A=15∘,B=17∘,C=13∘
⇒A+B+C=45∘
⇒2A+2B+2C=90∘
∴2P=2A,2Q=2B,2R=2C
∴tan2Atan2B+tan2Btan2C+tan2Ctan2A=1
⇒cot2Acot2B1+cot2Bcot2C1+cot2Ccot2A1=1
⇒cot2Acot2Bcot2Ccot2C+cot2A+cot2B=1
⇒cot2A+cot2B+cot2C
=cot2Acot2Bcot2C
∴ Assertion is true.