Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Area lying in the first quadrant between the curves x2+y2=π 2 and y=sinx , is equal to
Q. Area lying in the first quadrant between the curves
x
2
+
y
2
=
π
2
and
y
=
s
in
x
, is equal to
49
135
NTA Abhyas
NTA Abhyas 2022
Report Error
A
2
(
(
π
)
2
−
8
)
B
3
(
(
π
)
3
−
8
)
C
4
(
(
π
)
2
−
8
)
D
4
(
(
π
)
3
−
8
)
Solution:
Area the circle in
1
s
t
quadrate.
=
π
.
4
π
2
Area of one loop of
s
in
x
=
2
4
π
3
−
2
=
4
π
3
−
8