We have, y=−x−2...(i) y=x−2...(ii) y=2−x...(iii) y=x...(iv)
Solving (iii) and (iv), we get A(1,1)
Solving (i) and (iv), we get D(−1,−1)
Required area = area of ΔAOB+ area of ΔOCB+ area of ΔOCD
Area of ΔAOB=0∫1xdx+1∫2(2−x)dx =[2x2]01+[2x−2x2]12=21+[4−44]−[2−21] =21+24−23=1 sq. unit
Area of ΔOCB=∣∣0∫2(x−2)dx∣∣ =∣∣[2x2−2x]02∣∣=2sq. units
Area of ΔOCD=∣−1∫0(−x−2)dx−−1∫0xdx =∣∣−[2x2+2x]−10−[2x2]−10∣∣=1 sq. unit
Required area =1+2+1=4 sq. units