We have, y=−x−2...(i) y=x−2....(ii) y=2−x.....(iii) y=x...(iv)
Solving (iii) and (iv), we get A(1,1)
Solving (i) and (iv) we get D(−1,−1)
Required area = area of ΔAOB + area of ΔOCB
+ area of ΔOCD
Area of ΔAOB=0∫1xdx+1∫2(2−x)dx =[2x2]01+[2x−2x2]12 =21+[4−24]−[2−21] =21+24−23=1 sq. units
Area of ΔOCB=∣∣0∫2(x−2)dx∣∣ =∣∣[2x2−2x]02∣∣=2 sq. units
Area of ΔOCD=∣∣−1∫0(−x−2)dx−−1∫0xdx∣∣ =∣∣−[2x2+2x]−10−[2x2]−10∣∣=1 sq. unit