Q.
Applying Lagrange's Mean Value Theorem for a suitable function f(x) in [0,h], we have f(h)=f(0)+hf′(θh),0<θ<1. Then, for
f(x)=cosx, the value of h→0+limθ is
We know that in a Lagrange mean value theorem there exist c∈(a,b) such that f′(c)=b−af(b)−f(a) ∴f′(θh)=h−0f(h)−cos0 ⇒−sin(θh)=h−0cosh−cos0 [∵f(x)=cosx] =hcosh−1 =h(1−2!h2)−1
[neglecting higher power of h] ⇒−sin(θh)=h−2h2 ⇒sin(θh)=12h ⇒θh=sin−1(2h) ⇒θ=h×21sin−12h×21 ∴h→θ+limθ=21h→0+lim2hsin−12h =21×1=21