Q.
An even polynomial function f(x) satisfies a relation f(2x)(1−f(2x1))+f(16x2y)=f(−2)−f(4xy)∀x,y∈R−{0} and f(4)=−255,f(0)=1Which of the following hold(s) good?
We have f(2x)−f(2x)f(2x1)+f(16x2y)=f(−2)−f(4xy)
Replacing y by 8x21, we get f(2x)−f(2x)f(2x1)+f(2)=f(−2)−f(2x1) f(2x)+f(2x1)=f(2x)f(2x1)( As f(x) is even) ∴f(2x)=1±(2x)n ⇒f(x)=1±xn
Now f(4)=1±4n=−255 (Given)
Taking negative sign, we get 256=4n⇒n=4
Hence f(x)=1−x4, which is even function.
Now ∣f(x)∣=k−2 ⇒0<k−2<1⇒2<k<3
Clearly f(x) has local maximum at x=0.
Also 0∫1f(x)dx=0∫1(1−x4)dx=(1−5x5)01=1−51=54.