Q.
An ellipse a2x2+b2y2=1,a>b and the parabola x2=4(y+b) are such that the two foci of the ellipse and the end points of the latusrectum of parabola are the vertices of a square . The eccentricity of the ellipse is
Equation of ellipse a2x2+b2y2=1,a>b
Equation of parabola x2=4(y+b)
Foci of ellipse (±ae,0)
End of latusrectum of parabola =(±2,1−b) ABCD is a square AB=CD⇒2ae=4 ⇒ae=2 BC=CD⇒BC2=CD2 (2−ae)2+(1−b)2=42 ⇒0+(1−b)2=42 ⇒1−b=±4 b=5,b=−3⇒a=29 or 13 ∴e=1−a2b2 ⇒e=1−139=132 or 2