a2x2+b2y2=1,x2+y2=ab a22x1+b22y1y′=0 ⇒y1′=a2−x1y1b2...(1) ∴2x1+2y1y′=0 ⇒y2′=y1−x1...(2)
Here (x1y1) is point of intersection of both curves ∴x12=a+ba2b,y12=a+bab2 ∴tanθ=∣∣1+y1′y2′y1′−y2′∣∣=∣∣1+a2y12x12b2a2y1−x1b2+y1x1∣∣ tanθ=∣∣a2y12+b2x12−b2x1y1+a2x1y1∣∣ tanθ=∣∣aba−b∣∣